8 research outputs found

    Accelerating advances in landscape connectivity modelling with the ConScape library

    Get PDF
    Increasingly precise spatial data (e.g. high-resolution imagery from remote sensing) allow for improved representations of the landscape network for assessing the combined effects of habitat loss and connectivity declines on biodiversity. However, evaluating large landscape networks presents a major computational challenge both in terms of working memory and computation time. We present the ConScape (i.e. “connected landscapes”) software library implemented in the high-performance open-source Julia language to compute metrics for connected habitat and movement flow on high-resolution landscapes. The combination of Julia's ‘just-in-time’ compiler, efficient algorithms and ‘landmarks’ to reduce the computational load allows ConScape to compute landscape ecological metrics—originally developed in metapopulation ecology (such as ‘metapopulation capacity’ and ‘probability of connectivity’)—for large landscapes. An additional major innovation in ConScape is the adoption of the randomized shortest paths framework to represent connectivity along the continuum from optimal to random movements, instead of only those extremes. We demonstrate ConScape's potential for using large datasets in sustainable land planning by modelling landscape connectivity based on remote-sensing data paired with GPS tracking of wild reindeer in Norway. To guide users, we discuss other applications, and provide a series of worked examples to showcase all ConScape's functionalities in Supplementary Material. Built by a team of ecologists, network scientists and software developers, ConScape is able to efficiently compute landscape metrics for high-resolution landscape representations to leverage the availability of large data for sustainable land use and biodiversity conservation. As a Julia implementation, ConScape combines computational efficiency with a transparent code base, which facilitates continued innovation through contributions from the rapidly growing community of landscape and connectivity modellers using Julia. circuitscape, conefor, ecological networks, least-cost path, metapopulation, random walk, randomized shortest pathspublishedVersio

    Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial

    Get PDF
    BackgroundAnterior cruciate ligament (ACL) rupture is a common debilitating injury that can cause instability of the knee. We aimed to investigate the best management strategy between reconstructive surgery and non-surgical treatment for patients with a non-acute ACL injury and persistent symptoms of instability.MethodsWe did a pragmatic, multicentre, superiority, randomised controlled trial in 29 secondary care National Health Service orthopaedic units in the UK. Patients with symptomatic knee problems (instability) consistent with an ACL injury were eligible. We excluded patients with meniscal pathology with characteristics that indicate immediate surgery. Patients were randomly assigned (1:1) by computer to either surgery (reconstruction) or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment), stratified by site and baseline Knee Injury and Osteoarthritis Outcome Score—4 domain version (KOOS4). This management design represented normal practice. The primary outcome was KOOS4 at 18 months after randomisation. The principal analyses were intention-to-treat based, with KOOS4 results analysed using linear regression. This trial is registered with ISRCTN, ISRCTN10110685, and ClinicalTrials.gov, NCT02980367.FindingsBetween Feb 1, 2017, and April 12, 2020, we recruited 316 patients. 156 (49%) participants were randomly assigned to the surgical reconstruction group and 160 (51%) to the rehabilitation group. Mean KOOS4 at 18 months was 73·0 (SD 18·3) in the surgical group and 64·6 (21·6) in the rehabilitation group. The adjusted mean difference was 7·9 (95% CI 2·5–13·2; p=0·0053) in favour of surgical management. 65 (41%) of 160 patients allocated to rehabilitation underwent subsequent surgery according to protocol within 18 months. 43 (28%) of 156 patients allocated to surgery did not receive their allocated treatment. We found no differences between groups in the proportion of intervention-related complications.InterpretationSurgical reconstruction as a management strategy for patients with non-acute ACL injury with persistent symptoms of instability was clinically superior and more cost-effective in comparison with rehabilitation management

    Mesures de similarités sur des réseaux et nouvelles méthodes de filtrage collaboratif

    No full text
    This work tackles different aspects of how to predict users' interest and behavior with social networks and recommender systems. On social network, we worked on the definition of similarity measure and on how to use them to predict characteristics of the nodes of a network. On recommender systems, we focused on improving collaborative filtering methods, which are a family of recommender systems based on the modelling of user-item interactions. We developed solutions to update models in real-time based on new observations, to exploit the order in which interactions happened to improve recommendation, and to speed up recommendations through the clustering of items.Doctorat en Sciences de l'ingénieur et technologieinfo:eu-repo/semantics/nonPublishe

    Accelerating model-based collaborative filtering with item clustering

    No full text
    info:eu-repo/semantics/publishe

    Collaborative Filtering with Recurrent Neural Networks

    No full text
    info:eu-repo/semantics/publishe

    Collaborative Filtering with Recurrent Neural Networks

    No full text
    info:eu-repo/semantics/publishe

    Random Walks Based Modularity : Application to Semi-Supervised Learning

    No full text
    Although criticized for some of its limitations, modularity remains a standard measure for analyzing social networks. Quantifying the statistical surprise in the arrangement of the edges of the network has led to simple and powerful algorithms. However, relying solely on the distribution of edges instead of more complex structures such as paths limits the extent of modularity. Indeed, recent studies have shown restrictions of optimizing modularity, for instance its resolution limit. We introduce here a novel, formal and welldefined modularity measure based on random walks. We show how this modularity can be computed from paths induced by the graph instead of the traditionally used edges. We argue that by computing modularity on paths instead of edges, more informative features can be extracted from the network. We verify this hypothesis on a semi-supervised classification procedure of the nodes in the network, where we show that, under the same settings, the features of the random walk modularity help to classify better than the features of the usual modularity. Additionally, the proposed approach outperforms the classical label propagation procedure on two data sets of labeled social networks
    corecore